THÉORIE DES GROUPES 2024 - 25, SÉRIE 4

Exercise 1. À faire après chaque cours!

Revoir le cours et comprendre/remplir les lacunes dans les démonstrations.

Exercise 2. Soit p un nombre premier et G un groupe d'ordre p^2 . Soit Z(G) le centre de G. En utilisant les étapes suivantes, montrez que si G n'est pas cyclique, alors il est isomorphe à $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

- (1) En utilisant l'action de G sur lui-même par conjugaison, montrez que Z(G) est non trivial.
- (2) Montrez que G/Z(G) est cyclique et déduisez que G est abélien.
- (3) Montrez le résultat.

Exercise 3. Montrez que $\mathbb{Z}/4\mathbb{Z}$ ne peut pas être écrit comme le produit semi-direct $\mathbb{Z}/2\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$ pour aucun homomorphisme $\varphi : \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/2\mathbb{Z})$.

Exercise 4. Produit semi-direct interne

- (1) **Définition :** Soit G un groupe et soient $K, L \subseteq G$ des sous-groupes. On dit que G est le produit semi-direct interne de K avec L si les propriétés suivantes sont satisfaites
 - (a) K est un sous-groupe normal de G.
 - (b) $K \cap L = \{1\}.$
 - (c) KL = G.

Notez que si G est un produit semi-direct interne de K avec L, alors puisque K est un sous-groupe normal de G, il existe une action de L sur K par automorphismes, à savoir $l \cdot k := lkl^{-1}$ pour $l \in L$ et $k \in K$. Soit φ l'homomorphisme correspondant $L \to \operatorname{Aut}(K)$. Montrez que

$$G \cong K \rtimes_{\varphi} L$$
.

(2) Supposons de plus que L soit également un sous-groupe normal de G, montrez que kl = lk pour tout $k \in K$ et $l \in L$. Observez que cela implique que $\varphi : L \to \operatorname{Aut}(K)$ est l'homomorphisme trivial. Concluez que

$$G \cong K \times L$$
.

Exercise 5. Soit $G = K \rtimes_{\psi} L$ pour certains groupes K, L et un homomorphisme $\psi : L \to \operatorname{Aut}(K)$. Vérifiez que G est le produit semi-direct interne de $K \times \{1\}$ avec $\{1\} \times L$ dans G. Vérifiez de plus que

$$(\psi_l(k), 1) = (1, l) \cdot (k, 1) \cdot (1, l)^{-1}$$

dans G. En utilisant ceci, concluez que

$$G = K \rtimes_{\psi} L \cong (K \times \{1\}) \rtimes_{\varphi} (\{1\} \times L).$$

où $\varphi:\{1\}\times L\to \operatorname{Aut}(K\times\{1\})$ correspond à l'action par conjugaison de $\{1\}\times L$ sur $K\times\{1\}$ dans G.

Exercise 6. Écrivez S_3 comme un produit semi-direct de sous-groupes.

Exercise 7. Soit $n \ge 1$ un entier positif.

- (1) Trouvez tous les homomorphismes possibles $\varphi : \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/4\mathbb{Z})$;
- (2) Décrivez leur produit semi-direct associé $\mathbb{Z}/4\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$.
- (3) L'un d'eux est-il isomorphe à D_8 ?
- (4) Trouvez un homomorphisme $\varphi : \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ tel que $D_{2n} \cong \mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$.

Exercise 8. Soit F un corps quelconque. Le but de cet exercice est de montrer que

$$\operatorname{GL}_n(F) \cong \operatorname{SL}_n(F) \rtimes_{\varphi} F^{\times}$$

pour un certain $\varphi: F^{\times} \to \operatorname{Aut}(\operatorname{SL}_n(F))$.

Nous le ferons en montrant que la suite exacte courte suivante se scinde à droite (voir la Proposition 10 du Cours 4 des notes) :

$$1 \to \operatorname{SL}_n(F) \xrightarrow{i} \operatorname{GL}_n(F) \xrightarrow{\det} F^{\times} \to 1.$$

C'est-à-dire, construisez un homomorphisme de groupes $\phi: F^{\times} \to GL_n(F)$ tel que det $\circ \phi = Id_{F^{\times}}$. Quelle est la fonction $\varphi: F^{\times} \to Aut(SL_n(F))$ qui correspond à la section ϕ que vous avez construite, de sorte que $GL_n(F) \cong SL_n(F) \rtimes_{\varphi} F^{\times}$?